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Abstract

The lattice Boltzmann method (LBM) was used to solve the energy equation of a transient conduction–radiation heat
transfer problem. The finite volume method (FVM) was used to compute the radiative information. To study the compat-
ibility of the LBM for the energy equation and the FVM for the radiative transfer equation, transient conduction and radi-
ation heat transfer problems in 1-D planar and 2-D rectangular geometries were considered. In order to establish the
suitability of the LBM, the energy equations of the two problems were also solved using the FVM of the computational
fluid dynamics. The FVM used in the radiative heat transfer was employed to compute the radiative information required
for the solution of the energy equation using the LBM or the FVM (of the CFD). To study the compatibility and suitability
of the LBM for the solution of energy equation and the FVM for the radiative information, results were analyzed for the
effects of various parameters such as the scattering albedo, the conduction–radiation parameter and the boundary emis-
sivity. The results of the LBM–FVM combination were found to be in excellent agreement with the FVM–FVM combi-
nation. The number of iterations and CPU times in both the combinations were found comparable.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In the recent years, usage of the lattice Boltzmann method (LBM) as an alternative approach to the con-
ventional computational fluid dynamics (CFD) solvers such as the finite element method (FEM), the finite
difference method (FDM) and the finite volume method (FVM) has gained momentum [1–9]. As a different
approach from the CFD solvers, the LBM uses simple microscopic kinetic models to simulate complex
transport phenomena. In comparison to the CFD solvers, the advantages of the LBM include among other
simple calculation procedure, simple and efficient implementation for parallel computation, easy and robust
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doi:10.1016/j.jcp.2006.08.021

* Corresponding author. Tel.: +91 361 2582660; fax: +91 361 2690762.
E-mail address: scm_iitg@yahoo.com (S.C. Mishra).

mailto:scm_iitg@yahoo.com


Nomenclature

A area
a anisotropy factor
b number of discrete directions in the lattice
cp specific heat
~ei propagation velocity in the direction i in the lattice
fi particle distribution function in the i direction
f ð0Þi equilibrium particle distribution function in the i direction
G incident radiation
I intensity
k thermal conductivity
Mh number of discrete h directions
M/ number of discrete / directions
m index for direction
N conduction–radiation parameter, jb=ð4rT 3

refÞ
n̂ outer normal
P cell center
~qR radiative heat flux
~r position, r(x,y,z)
S source term
T temperature
t time
V volume of the cell
w weight in the LBM
X, Y, Z length of the rectangular enclosure in x, y and z directions

Greek symbols
a thermal diffusivity
b extinction coefficient
c finite difference weighing factor
e emissivity
h polar angle
ja absorption coefficient
n non-dimensional time, ab2t

q density
r Stefan–Boltzmann constant (=5.670 · 10�8 W/m2 K4)
rs scattering coefficient
s relaxation time
U scattering phase function
/ azimuthal angle
x scattering albedo
X direction in the FVM and rate of change of the particle distribution function fi in the LBM
DX elemental solid angle

Subscripts

E,W, N, S, F, B east, west, north, south, front and back
b boundary
x, y, z x, y and z reference faces
e exit
i inlet
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k, l index of discrete polar and azimuthal angles, respectively
P value at the cell center

Superscript
m index for direction
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handling of complex geometries and high computational performance with regard to stability and accuracy
[1–9].

The LBM has found extensive usage in the fluid mechanics [3,5–8] and its recent application to prob-
lems involving conductive, convective and/or radiative heat transfer has been very encouraging [10–14].
Shan [10] and Mezrhab et al. [11] used the LBM to analyze the convective flows. Ho et al. [12,13] solved
a non-Fourier heat conduction problem in a planar medium using the LBM. Solidification of a planar
medium using the LBM was analyzed by Jiaung et al. [14]. Chatterjee and Chakraborty [15] used the
LBM to analyze solid–liquid phase transitions in the presence of thermal diffusion. Mishra and Lankadasu
[16] applied the LBM to solve the energy equation of transient conduction and radiation heat transfer in a
planar medium with or without heat generation. They used the discrete transfer method (DTM) [17] to
compute the radiative information. Mishra et al. [18] used the LBM to solve the energy equation of a
transient conduction–radiation heat transfer in a 2-D square enclosure. In their study, they used the col-
lapsed dimension method (CDM) [19] to compute the radiative information. Application of the LBM to
analyze the solidification of a semitransparent planar layer was extended by Raj et al. [20]. They used the
DTM [17] to compute the radiative information. Gupta et al. [21] used the concept of a variable relaxa-
tion time in the LBM and then solved the energy equation of a temperature dependent transient conduc-
tion and radiation heat transfer in a planar medium. They used the discrete ordinate method (DOM) [22]
for the determination of the radiative information. In all the previous applications to the conduction–radi-
ation heat transfer problems, the LBM was found to provide accurate results and compatibilities of the
LBM for solution of energy equation and the DTM, the CDM and the DOM for the determination of
radiative information were established. The DTM in [18,20] and the DOM in [21] with the LBM were
applied to 1-D planar geometry.

In radiative heat transfer, the finite volume method (FVM) [23,24] is extensively used to compute the radi-
ative information. This method is a variant of the DOM [22]. However, unlike the DOM, it does not suffer
from the false-scattering [24]. In this method, the ray-effect is also less pronounced [24]. Since the FVM for
the radiative heat transfer utilizes the same concept as that of the FVM of the CFD, in conjugate mode prob-
lems, its computational grids are compatible with the FVM grids that are utilized in the solution of the
momentum and energy equations [25,26]. Thus, although the FVM for the radiative heat transfer is only a
15-year old method, it enjoys more popularity than the DTM, and the DOM.

In solving the energy equations of the combined radiation, conduction and/or convection heat transfer
problems using the conventional CFD based methods such as the FDM and the FVM, robustness of the
FVM in providing radiative information is well established [23,24]. Since the LBM is relatively a new method
and for the solution of combined radiation, conduction and/or convection mode problems its application is
very recent, the FVM has so far not been used in conjunction with the LBM to solve any such problems.
The present article is thus aimed at extending the application of both the LBM and the FVM to a relatively
new class of problems.

The objective of the present work is to establish the compatibility of the LBM for the solution of the energy
equation and the FVM for the determination of radiative information. One other objective is also to see how
the LBM–FVM combination performs against the FVM–FVM combination in which the energy equation is
solved using the FVM of the CFD and the radiative information is computed using the FVM of radiative heat
transfer. Towards this goal, transient conduction and radiation heat transfer problems in 1-D planar and 2-D
rectangular enclosures are considered. For various parameters like the scattering albedo, the conduction–radi-
ation parameter and the boundary emissivity, results of the LBM–FVM and the FVM–FVM are compared
with those reported in the literature and compared against each other. Effects of the spatial and angular res-
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olutions on the results are also made. The number of iterations and CPU times for the converged solutions are
also reported.

The paper is organized as follows. In Section 2, the formulation of the FVM to calculate radiative infor-
mation required for the energy equation is provided first. The methodology of the LBM is discussed next.
Implementation of the boundary conditions is briefly discussed after that. The solution procedure has been
discussed in Section 3. The results of the parametric study and the comparison are presented in Section 4. Con-
clusions and recommendations are made at the end.

2. Formulation

In the absence of convection and heat generation, for a homogeneous medium, the energy equation is given by
qcp
oT
ot
¼ kr2T �r �~qR ð1Þ
where q is the density, cp is the specific heat, k is the thermal conductivity and ~qR is the radiative heat flux.
With radiative information r �~qR computed using any of the methods such as the DTM [17], the CDM
[19], the DOM [22] and the FVM [23,24], Eq. (1) can be solved using any of the conventional CFD methods
such as the FDM, FEM and the FVM or an alternative approach, the LBM.

The FVM in the radiative heat transfer being the latest and the most versatile method for the computation
of radiative information r �~qR and the LBM being seen as a potential substitute of the CFD based methods
such as the FDM, the FEM and the FVM, in the following pages we briefly discuss the methodology of the
FVM for the computation of r �~qR and the procedure in the LBM to solve the energy equation (Eq. (1)). The
coupling of the methods of two different kinds is also discussed.

2.1. The finite volume method (FVM)

The radiative transfer equation (RTE) in any direction ŝ identified by the solid angle X about an elemental
solid angle dX is given by [27]
dIð~r;XÞ
ds

¼ �ðja þ rsÞIð~r;XÞ þ ja

rT 4ð~rÞ
p

� �
þ rs

4p

Z
X0¼4p

Ið~r;X0ÞUðX;X0ÞdX0 ð2Þ
where ja is the absorption coefficient, rs is the scattering coefficient and U is the scattering phase function. Eq.
(2) can be written as
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Fig. 1. Intensity Im in direction Xm in the center of the elemental sub-solid angle DXm.
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dI
ds
¼ �bI þ S ð3Þ
where b = ja + rs is the extinction coefficient and S is the source term given by
S ¼ ja

rT 4

p

� �
þ rs

4p

Z
X0¼4p

IðX0ÞUðX;X0ÞdX0 ð4Þ
Resolving Eq. (1) along the Cartesian coordinate directions (Fig. 1) and integrating it over the elemental solid
angle DXm, we get
oIm

ox
Dm

x þ
oIm

oy
Dm

y þ
oIm

oz
Dm

z ¼ �bImDXm þ SmDXm ð5Þ
If n̂ is the outward normal to a surface, then Dm is given by
Dm ¼
Z

DXm
ðn̂ � ŝmÞdX ð6Þ
where the direction ŝm ¼ ðsin hm cos /mÞ̂iþ ðsin hm sin /mÞ̂jþ ðcos hmÞk̂. When n̂ is pointing towards one of the
positive coordinate directions, Dm

x , Dm
y and Dm

z are given by
Dm
x ¼

Z
DXm

sin h cos /dX ¼
Z /mþD/m

2

/m�D/m

2

Z hmþDhm
2

hm�Dhm
2

cos / sin2 hdhd/

¼ cos /m sin
D/m

2

� �
½Dhm � cos 2hm sinðDhmÞ� ð7aÞ

Dm
y ¼

Z
DXm

sin h sin /dX ¼
Z /mþD/m

2

/m�D/m

2

Z hmþDhm
2

hm�Dhm
2

sin / sin2 hdhd/

¼ sin /m sin
D/m

2

� �
½Dhm � cos 2hm sinðDhmÞ� ð7bÞ

Dm
z ¼

Z
DXm

cos hdX ¼
Z /mþD/m

2

/m�D/m

2

Z hmþDhm
2

hm�Dhm
2

cos h sin hdhd/ ¼ sin hm cos hm sinðDhmÞD/m ð7cÞ
For n̂ pointing towards the negative coordinate directions, signs of Dm
x , Dm

y and Dm
z are opposite to what are

obtained from Eq. (7). In Eq. (5), DXm is given by
DXm ¼
Z

DXm
dX ¼

Z /mþD/m

2

/m�D/m

2

Z hmþDhm
2

hm�Dhm
2

sin hdhd/ ¼ 2 sin hm sin
Dhm

2

� �
D/m ð8Þ
For the limits of integrations in Eqs. (7) and (8), please refer to Fig. 1.
Integrating Eq. (8) over the control volume and using the concept of the FVM for the CFD, we get
½Im
E � Im

W�AEWDm
x þ ½Im

N � Im
S �ANSDm

y þ ½Im
F � Im

B �AFBDm
z ¼ ½�bVIm

P þ VSm
P �DXm ð9Þ
where AEW, ANS and AFB are the areas of the x-, y- and z-faces of the 3-D control volume, respectively. In Eq.
(9), I with suffixes E, W, N, S, F and B designate east, west, north, south, front and back control surface aver-
age intensities, respectively. On the right-hand-side of Eq. (9), V = dx · dy · dz is the volume of the cell and Im

P

and Sm
P are the intensities and source terms at the cell center P, respectively.

In any discrete direction Xm, if a linear relationship among the two cell-surface intensities and cell-center
intensity Im

P is assumed, then
Im
P ¼ cxI

m
E þ ð1� cxÞIm

W ¼ cyI
m
N þ ð1� cyÞIm

S ¼ czI
m
F þ ð1� czÞIm

B ð10Þ
where c is the finite difference weighting factor and its value is normally considered to be 0.5. While marching
from the first octant of a 3-D enclosure (Fig. 4a) for which Dm

x , Dm
y and Dm

z are all positive, Im
P in terms of

known cell-surface intensities can be written as
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Im
P ¼

Dm
x AEW

cx
Im

W þ
Dm

y ANS

cy
Im

S þ
Dm

z AFB

cz
Im

B þ ðV DXmÞSm
P

Dm
x AE

cx
þ Dm

y AN

cy
þ Dm

y AF

cz
þ bV DXm

ð11Þ
where
AEW ¼ ð1� cxÞAE þ cxAW;ANS ¼ ð1� cyÞAN þ cyAS;AFB ¼ ð1� czÞAF þ czAB ð12Þ
are the averaged areas. When any one of the Dm
x , Dm

y or Dm
z is negative, marching starts from other corners

(Fig. 4a). In this case, a general expression of Im
P in terms of known intensities and source term can be written as
Im
P ¼

jDm
x jAx

cx
Im

xi
þ jD

m
y jAy

cy
Im

yi
þ jD

m
z jAz

cz
Im

zi
þ ðV DXmÞSm

P

jDm
x jAxe
cx
þ jD

m
y jAye
cy
þ jD

m
z jAze
cz
þ bV DXm

ð13Þ
where in Eq. (13), xi, yi and zi suffixes over Im are for the intensities entering the control volume through x-, y-
and z-faces, respectively and Ax, Ay and Az are given by
Ax ¼ ð1� cxÞAxe þ cxAxi ; Ay ¼ ð1� cyÞAye
þ cyAyi

; AFB ¼ ð1� czÞAze þ czAzi ð14Þ
In Eq. (13) A with suffixes xi, yi and zi represent control surface areas through which intensities enter the con-
trol volume, while A with suffixes xe, ye and ze represent control surface areas through which intensities leave
the control volume.

For a linear anisotropic phase function U(X,X 0) = 1 + acoshcosh 0, the source term S at any location~r is
given by
S ¼ ja

rT 4

p

� �
þ rs

4p

� �Z 2p

0

Z p

0

Iðh0;/0Þð1þ a cos h cos h0Þ sin h0 dh0 d/0 ð15Þ
which in terms of the incident radiation G and net radiative heat flux qR is written as
S ¼ ja

rT 4

p

� �
þ rs

4p
½Gþ a cos hqR� ð16Þ
In Eq. (16), G and qR are given by and numerically computed from the following
G ¼
Z 4p

X¼0

IðXÞdX ¼
Z 2p

/¼0

Z p

h¼0

Iðh;/Þ sin hdhd/ �
XM/

k¼1

XMh

l¼1

Imðhm
l ;/

m
k Þ2 sin hm

l sin
Dhm

l

2

� �
D/m

k ð17Þ
where Mh and M/ are the number of discrete points considered over the complete span of the polar angle
(0 6 h 6 p) and azimuthal angle (0 6 / 6 2p), respectively. Therefore, Mh · M/ constitute the number of dis-
crete directions in which intensities are considered at any point.
qR ¼
Z 4p

X¼0

IðXÞ cos hdX ¼
Z 2p

/¼0

Z p

h¼0

Iðh;/Þ cos h sin hdhd/

�
XM/

k¼1

XMh

l¼1

Imðhm
l ;/

m
k Þ sin hm

l cos hm
l sinðDhm

l ÞD/m
k ð18Þ
While marching from any of the corners, evaluation of Eq. (13) requires knowledge of the boundary intensity.
For a diffuse-gray boundary/wall having temperature Tb and emissivity eb, the boundary intensity Ib is com-
puted from
Ib ¼
ebrT 4

b

p
þ 1� eb

p

� �XM/

k¼1

XMh=2

l¼1

Imðhm
l ;/

m
k Þ sin hm

l cos hm
l sin Dhm

l D/m
k ð19Þ
In Eq. (19), the first and the second terms represent the emitted and the reflected components of the boundary
intensity, respectively.

Once the intensity distributions are known, radiative information r �~qR required for the energy equation is
computed from
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r �~qR ¼ bð1� xÞ 4p
rT 4

p
� G

� �
ð20Þ
where in Eq. (20), x = rs/b is the scattering albedo.

2.2. Lattice Boltzmann method (LBM)

The starting point of the LBM is the kinetic equation which for a 3-D geometry is given by [3,5,7,8]
ofið~r; tÞ
ot

þ~ei � rfið~r; tÞ ¼ Xi; i ¼ 1; 2; 3; . . . ; b ð21Þ
where fi is the particle distribution function denoting the number of particles at the lattice node~r ¼ ð~rðx; y; zÞÞ
and time t moving in direction i with velocity~ei along the lattice link D~r ¼~eiDt connecting the nearest neigh-
bors and b is the number of directions in a lattice through which the information propagates. The term Xi

represents the local change in fi due to particle collisions. Using the single time relaxation of the Bhatana-
gar–Gross–Krook (BGK) approximation, the discrete Boltzmann equation is given by [3,5,7,8]
ofið~r; tÞ
ot

þ~ei � rfið~r; tÞ ¼ �
1

s
½fið~r; tÞ � f ð0Þi ð~r; tÞ� ð22Þ
where s is the relaxation time and f ð0Þi is the equilibrium distribution function. In the LBM, lattices depend
upon the geometries. D1Q2 and D1Q3 are the lattices used in 1-D geometries, while D2Q7 and D2Q9 are
the lattices used in 2-D geometries. In 3-D geometries, normally D3Q15 and D3Q19 lattices are used. In
all these lattices, the number following D denotes the dimension and the number following Q denotes the num-
ber of directions through which the particle distribution function fi propagates to the nearest neighbors. In the
lattice having odd number of directions, one particle distribution function remains at rest at the lattice center.

For a given application, relaxation time s is different for different lattices. In heat transfer problems, the
relaxation time s for the D1Q2 lattice (Fig. 2) is computed from [7,8]
s ¼ a

j~eij2
þ Dt

2
ð23Þ
For the D1Q2 lattice (Fig. 2) the two velocities~ei and their corresponding weights wi are calculated from
e1 ¼ C; e2 ¼ �C ð24Þ

w1 ¼ w2 ¼
1

2
ð25Þ
Fig. 2. D1Q2 lattice of the LBM and control volume of the FVM used in 1-D planar geometry.



Fig. 3. (a) Arrangement of lattices and control volumes in a 2-D rectangular geometry and (b) D2Q9 lattice used in a 2-D geometry.
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The relaxation time s for the D2Q9 (Fig. 3b) and the D3Q15 (Fig. 4b) lattices is given by [7,8]
s ¼ 3a

j~eij2
þ Dt

2
ð26Þ
The nine velocities~ei and their corresponding weights wi in the D2Q9 lattice are the following:
e0 ¼ ð0; 0Þ
e1;3 ¼ ð�1; 0Þ � C
e2;4 ¼ ð0;�1Þ � C
e5;6;7;8 ¼ ð�1;�1Þ � C

ð27Þ

w0 ¼
4

9
; w1;2;3;4 ¼

1

9
; w5;6;7;8 ¼

1

36
ð28Þ
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For the D3Q15 lattice (Fig. 3b), the same are given by
e0 ¼ ð0; 0; 0Þ
e1;2 ¼ ð�2; 0; 0Þ � C
e3;4 ¼ ð0;�2; 0Þ � C
e5;6 ¼ ð0; 0;�2Þ � C
e7;...;14 ¼ ð�1;�1;�1Þ � C

ð29Þ

w0 ¼
2

9
; w1;...;6 ¼

1

9
; w7;...;14 ¼

1

72
ð30Þ
It is to be noted that in the above equations, C = Dx/Dt = Dy/Dt = Dz/Dt and the weights satisfy the relationPb
i¼1wi ¼ 1.
After discretization, Eq. (21) can be written as [7,8]
fið~r þ~eiDt; t þ DtÞ ¼ fið~r; tÞ �
Dt
s
½fið~r; tÞ � f ð0Þi ð~r; tÞ� ð31Þ
This is the LB equation with the BGK approximation that describes the evolution of the particle distribution
function fi. The algorithm for Eq. (31) can be divided into two essential parts per time step:

� The calculation of new distribution functions fi with respect to the right-hand-side of Eq. (31), the so-called
collision.
� The streaming of the distribution functions to the next neighboring nodes, usually referred to as

propagation.

In case of heat transfer problems, the temperature is obtained after summing fi over all direction [7,8], i.e,
T ð~r; tÞ ¼
Xb

i¼0

fið~r; tÞ ð32Þ
To process Eq. (31), an equilibrium distribution function is required. For heat conduction problems, this is
given by
f ð0Þi ð~r; tÞ ¼ wiT ð~r; tÞ ð33Þ

From Eqs. (32) and (33), we also have
Xb

i¼0

f ð0Þi ð~r; tÞ ¼
Xb

i¼0

wiT ð~r; tÞ ¼ T ð~r; tÞ ¼
Xb

i¼0

fið~r; tÞ ð34Þ
Eq. (31), with definitions of temperature T ð~r; tÞ and equilibrium function f ð0Þi ð~r; tÞ given in Eqs. (32) and (33),
respectively, provide solution of a transient heat conduction problem in the LBM. To incorporate the volu-
metric radiation, Eq. (31) gets modified to
fið~r þ~eiDt; t þ DtÞ ¼ fið~r; tÞ �
Dt
s
½fið~r; tÞ � f ð0Þi ð~r; tÞ� �

Dt
qcp

� �
wir �~qR ð35Þ
Eq. (35) is the desired equation to be used in the LBM. It is to be noted that Eq. (1) can be obtained from Eq.
(34) using the Chapman–Enskog multiscale expansion. Details on derivation of Eq. (1) from Eq. (35) have
been given by Mishra et al. [18].

2.3. Implementation of boundary conditions in the LBM

In applications of the LBM to heat transfer problems, temperature or flux boundary condition at any
boundary can be applied using the bounce-back concept in the LBM in which particle fluxes are balanced
at any point on the boundary. Because of this balancing, in the implementation of the LBM, as shown in Figs.
2–4, the LBM lattices along the boundaries always extend a distance equal to half the control volume dimen-



Fig. 4. (a) Arrangement of lattices and control volumes in a 3-D Cartesian geometry (b) D3Q15 lattice in a 3-D geometry.
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sion in the respective coordinate directions and the lattice centers of the boundary lattices always lie along the
boundaries. Details on implantation of the boundary conditions can be found in [16,18,28].

3. Solution procedure

The medium is divided into a finite number of lattices/control volumes. The control volumes of the FVM
for computing the radiative information r �~qR and lattices in the LBM are staggered as shown in Figs. 2–4.
Sizes of the lattices in the LBM and the control volumes in the FVM are taken the same.

In solving Eq. (35),r �~qR information is required at the lattice centers (Figs. 2–4). In the FVM for the radi-
ative heat transfer, in any control volume, intensity distributions are computed at the mid-points of the control
surfaces and at the center of the FVM control volume. Thus r �~qR is known only at these points (three points
in 1-D, five points in 2-D and seven points in 3-D control volumes in Figs. 2–4, respectively). It is seen from
Figs. 2–4 that none of these points coincide with the lattice centers. Therefore,r �~qR value at any lattice center
is computed from the average of the r �~qR values of the control-surfaces surrounding that lattice center. For
the lattice centers along the corners, average of the r �~qR values are based on r �~qR of the corner faces. For
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any other points except the corner points along a boundary, the r �~qR at the lattice center is the average of
r �~qR values of the neighboring points, that are collinear for 2-D geometries and coplanar for 3-D geometries,
with the lattice center.

The procedure to solve the energy equation (Eq. (35)) is the following:
Depending upon the type of geometry, choose the lattice and accordingly compute the relaxation time s.

1. With initial temperature field known, in the first iteration, calculate the equilibrium particle distribution
function f ð0Þi ð~r; 0Þ from Eq. (33).

2. With initial temperature field known, calculate r �~qR using the FVM (Eq. (20)).
3. Calculate now the particle distribution functions fið~r þ~eiDt; t þ DtÞ using Eq. (35).
4. Propagate the particle distributions to the neighboring lattice centers.
5. Calculate the new temperature field T ð~r; tÞ using Eq. (32).
6. Check for convergence and terminate the process, if appropriate.
7. Modify the particle distribution functions locally, to satisfy the boundary conditions.

8. Compute the equilibrium particle distribution functions f ð0Þi ð~r; 0Þ from the new temperature field using Eq.
(33) for every lattice.

9. Go to step 2.
4. Results and discussion

To validate the usage of the LBM and to show the compatibility of the FVM for the radiative information
with the LBM solver for the energy equation, we consider transient conduction and radiation heat transfer in a
1-D planar and 2-D square geometries. To compare the performance of the LBM, the energy equations of the
two problems were also solved using the FVM of the CFD. In both the LBM and the FVM solvers of the
energy equations, radiative information r �~qR was computed using the FVM of the radiative heat transfer.
In the FVM solver for the energy equation, we used the alternative direction implicit scheme. In the LBM–
FVM (LBM for the energy equation and the FVM for the radiative information), as shown in Figs. 2 and
3, lattices in the LBM and the control volumes in the FVM for radiation were of the same size. Also in the
FVM–FVM (FVM for the solution of the energy equation and FVM for the determination of radiative infor-
mation) r �~qR, the same size control volumes were used.

4.1. Conduction and radiation heat transfer in a 1-D planar medium

In this case, initially the medium is at temperature TE. For time t > 0, the west boundary is maintained at TW.
The homogenous gray radiating–conducting medium is absorbing, emitting and isotropically scattering. The
medium boundaries are considered diffuse-gray. Benchmark results for this problem are available in [16,29–32].

In both the FVM–FVM and the LBM–FVM, non-dimensional time step Dn = 1.0 · 10�4(n = ab2t) was
considered and steady-state condition was assumed to have been achieved when the maximum variation in
temperature T/TW at any location between two consecutive time levels did not exceed 1.0 · 10�6. In both com-
binations of the methods, beyond 100 control volumes/lattices and 10 directions, no significant changes in the
results were observed.

It is to be noted that in case of a 1-D planar medium, radiation is azimuthally symmetric, I(h,/) = I(h).
Thus, in the FVM, only h space was discretized into 10 directions.

In Table 1, for the two sets of boundary emissivities, the FVM–FVM and the LBM–FVM results for tem-
perature T/TW at three locations in the medium viz x/X = 0.25, 0.5 and 0.75 are compared at time n = 0.05
with those reported in the literature [16,29–32]. In order to compare these results, initially the entire system
was considered cold TE = 0.0 and for time t > 0.0, the west boundary was maintained at temperature TW.
The values of the parameters considered were: extinction coefficient b = 1.0, scattering albedo x = 0.5 and

conduction–radiation parameter N ¼ jb
4rT 3

W

¼ 0:1. It is seen from the table that the FVM–FVM and the

LBM–FVM results are in very good agreements with each other and they also compare very well with those

reported in literatures [16,29–32].



Table 1
Comparison of transient temperature h at time n = 0.05 for b = 1.0, TE = 0.0, x = 0.5, and N = 0.1 and two sets of wall reflectivities

eW eE Investigators Transient temperature T
T W

x/X = 0.25 x/X = 0.50 x/X = 0.75

1.0 1.0 Barker and Sutton [29] 0.4893 0.1775 0.0588
Sutton [30] 0.4888 0.1778 0.0591
Tsai and Lin [31] 0.4889 0.1773 0.0588
Talukdar and Mishra [32] 0.4892 0.1768 0.0585
Mishra and Lankadasu [16] 0.4893 0.1770 0.0584
FVM–FVM (present) 0.4895 0.1771 0.0584
LBM–FVM (present) 0.4897 0.1771 0.0581

1.0 0.0 Barker and Sutton [29] 0.5035 0.2003 0.0831
Sutton [30] 0.5030 0.2005 0.0833
Tsai and Lin [31] 0.5031 0.2001 0.0830
Talukdar and Mishra [32] 0.5033 0.1995 0.0824
Mishra and Lankadasu [16] 0.5029 0.2007 0.0829
FVM–FVM (present) 0.4995 0.1995 0.0824
LBM–FVM (present) 0.4996 0.1991 0.0820
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Fig. 5. Comparison of non-dimensional temperature T/TW in a planar medium at different instants n for (a) scattering albedo x = 0.0 (a),
0.5 (b) and 0.9 (c).
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Comparisons of the LBM–FVM and the FVM–FVM temperature T/TW results at different instants of time
n for various sets of parameters have been shown in Figs. 5–7. For results in these figures, the initial temper-
ature of the system was TE and for time t > 0, the west boundary was raised to a temperature TW = 2TE.

In Fig. 5a–c, for extinction coefficient b = 1.0 and conduction–radiation parameter N = 0.01, temperature
T/TW results of the FVM–FVM and the LBM–FVM have been compared at different instants of time n for
three values of the scattering albedo x = 0.0, 0.5 and 0.9, respectively. It can be observed that at any n, the
results of the two methods compare very well with each other and the LBM–FVM and the FVM–FVM
are found to reach the steady-state (SS) almost the same time.

In Fig. 6, T/TW results of the two methods have been compared for the effects of the conduction–radiation
parameter N. For b = 1.0 and x = 0.0, in Fig. 6a–c, these comparisons have been shown for N = 0.01, 0.1 and
1.0, respectively. It is seen that for both radiation dominated (N = 0.01) (Fig. 6a) and conduction dominated
(N = 1.0) (Fig. 6c) situations, results of the FVM–FVM and the LBM–FVM are in good agreements with each
other. For N = 0.1 and 1.0, at an early stage n = 0.001, at some distance from the hot (west) boundary, the
FVM–FVM results are ahead of the LBM–FVM results. This trend has also been observed before [16,18]
while solving energy equations of the conduction–radiation problems using the LBM and the FVM in which
radiative information r �~qR was computed either using the DTM or the CDM. Since the convergence rates
are method specific, transient results may differ in some cases.

In Fig. 7, T/TW results have been compared for the effects of the west boundary emissivity eW. For b = 1.0,
x = 0.0 and N = 0.01, in Fig. 7a–c, comparisons have been shown for eW = 0.1, 0.5 and 0.9, respectively. In all
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Fig. 6. Comparison of non-dimensional temperature T/TW in a planar medium at different instants n for (a) conduction–radiation
parameter N = 0.01 (a), 0.1 (b) and 1.0 (c).
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Fig. 7. Comparison of non-dimensional temperature T/TW in a planar medium at different instants n for emissivity of the south boundary
eW = 0.1 (a), 0.5 (b) and 0.9 (c).

102 S.C. Mishra, H.K. Roy / Journal of Computational Physics 223 (2007) 89–107
these figures, the east boundary was considered black eE = 1.0. It can be seen from these figures that in all the
cases, results of the FVM–FVM and the LBM–FVM match very closely with each other and the both the
methods reach steady-state almost the same time.
Table 2
Effect of grid size in the FVM–FVM and the LBM–LBM on steady-state at three locations along the centerline x/X = 0.5

Control volumes/lattices Number of
directions Mh · M/

y/Y = 0.3 y/Y = 0.50 y/Y = 0.7

FVM–FVM LBM–FVM FVM–FVM LBM–FVM FVM–FVM LBM–FVM

Effect of control volumes/lattices

10 · 10 4 · 8 0.7608 0.7614 0.6649 0.6642 0.5973 0.5956
20 · 20 4 · 8 0.7591 0.7593 0.6641 0.6638 0.5965 0.5962
30 · 30 4 · 8 0.7591 0.7592 0.6638 0.6638 0.5964 0.5963
40 · 40 4 · 8 0.7590 0.7590 0.6638 0.6638 0.5964 0.5963

Effect of number of directions Mh · M/

20 · 20 2 · 4 0.7710 0.7715 0.6608 0.6609 0.5794 0.5793
20 · 20 4 · 8 0.7591 0.7593 0.6641 0.6638 0.5965 0.5962
20 · 20 6 · 12 0.7598 0.7598 0.6637 0.6635 0.5969 0.5963

b = 1.0, x = 0.0, N = 0.1.



Table 3
Comparison of steady-state centerline (x/X = 0.5) temperature at three locations in a black square enclosure; x = 0.0, b = 1.0

N Centerline T/TS at y/Y Wu and Ou [33] Yuen and Takara [34] Mishra et al. [35] FDM–FVM LBM–FVM

1.0 0.3 0.733 0.737 0.737 0.737 0.737
0.5 0.630 0.630 0.630 0.630 0.630
0.7 0.560 0.560 0.564 0.564 0.564

0.1 0.3 0.760 0.763 0.759 0.759 0.759
0.5 0.663 0.661 0.663 0.664 0.663
0.7 0.590 0.589 0.594 0.596 0.596

0.01 0.3 0.791 0.807 0.789 0.782 0.783
0.5 0.725 0.726 0.725 0.726 0.725
0.7 0.663 0.653 0.666 0.676 0.677
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4.2. Combined conduction and radiation heat transfer in a 2-D square enclosure

Transient conduction and radiation heat transfer in a 2-D square enclosure (Fig. 2a) is considered next. In
this, initially the entire system is at temperature Ti = TN = TW = TE. For t > 0 the south boundary tempera-
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Fig. 8. Comparison of non-dimensional centerline temperature T/TS in a 2-D square enclosure at different instants n for scattering albedo
x = 0.0 (a), 0.5 (b) and 0.9 (c).
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ture is raised to TS = 2Ti. The enclosed gray-homogeneous medium is absorbing, emitting and isotropically
scattering.

In Table 2, effects of the number of control volumes/lattices and the number of directions on temperature
T/TS results at three locations, viz y/Y = 0.25, 0.5 and 0.75 along the centerline x/X = 0.5 have been shown for
the FVM–FVM and the LBM–FVM. These effects have been shown for the extinction coefficient b = 1.0, the
scattering albedo x = 0.0 and the conduction–radiation parameter N = 0.1. Effect of the number of control
volumes/lattices was studied for Mh · M/ = 4 · 8 directions and for the effect of the number of directions,
20 · 20 control volumes/lattices were considered in both the methods.

It can be seen from Table 2 that with Mh · M/ = 4 · 8, on 20 · 20 grids and larger, in both the FVM–FVM
and the LBM–FVM, no significant variation in T/TS is observed. A similar trend was also found for the other
sets of parameters.

With 20 · 20 control volumes/lattices, effect of the number of discrete directions Mh · M/ on T/TS

results at three locations along the centerline x/X = 0.5 has also been shown in Table 2. No significant dif-
ference in the results are observed in Mh · M/ = 4 · 8 and Mh · M/ = 6 · 12. Hence for results in the fol-
lowing pages, in both the methods, we used 20 · 20 control volumes/lattices and Mh · M/ = 4 · 8
directions.
Distance, y/Y

Te
m

pe
ra

tu
re

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

LBM-FVM
FVM-FVM

ω = 0.0
Ν = 0.01

ξ = 0.001, 0.005, 0.015, 0.04, SS

SS
LBM-FVM: 0.090
FVM-FVM: 0.091

Distance, y/Y

Te
m

pe
ra

tu
re

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

LBM-FVM
FVM-FVM

ω = 0.0

Ν = 0.1

ξ = 0.001, 0.005, 0.015, 0.04, SS

SS
LBM-FVM: 0.258
FVM-FVM: 0.262

Distance, y/Y

Te
m

pe
ra

tu
re

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

LBM-FVM
FVM-FVM

ω = 0.0

Ν = 1.0

ξ = 0.001, 0.005, 0.015, 0.04, SS

SS
LBM-FVM: 0.311
FVM-FVM: 0.319

a b

c

Fig. 9. Comparison of non-dimensional centerline temperature T/TS in a 2-D square enclosure at different instants n for conduction–
radiation parameter N = 0.01 (a), 0.1 (b) and 1.0 (c).
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Fig. 10. Comparison of non-dimensional centerline temperature T/TS in a 2-D square enclosure at different instants n for emissivity of the
south boundary eS = 0.1 (a), 0.5 (b) and 0.9 (c).
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In Table 3, for the absorbing emitting case x = 0.0 and extinction coefficient b = 1.0, for the three
values of the conduction–radiation parameter N, temperature T/TS results at three locations along the cen-
terline (x/X = 0.5) are compared with those reported in the literature [33–35]. It is seen that the FVM–
FVM and the LBM–FVM results compare very well with each other and with those reported in the
literature [33–35].

Comparisons of the FVM–FVM and the LBM–FVM T/TS results along the centerline (x/X = 0.5) for the
effects of the scattering albedo x, the conduction–radiation parameter N and the emissivity of the south
boundary eS have been shown in Figs. 8–10, respectively. These results are shown for b = 1.0. In Figs. 8
and 9, all the four boundaries are considered black while for the results in Fig. 10, the south boundary is
reflecting and other three boundaries are considered black.

It is seen from Figs. 8–10 that at all instants n, results of the FVM–FVM and the LBM–FVM are in very
good agreements and the steady-state results match exactly with each other. Further it is observed that in all
cases the LBM–FVM reaches steady-state slightly ahead of the FVM–FVM.

To have an idea of the number of iterations for the converged solutions and the CPU time required for the
same, tests were performed with 20 · 20 and also with 40 · 40 control volumes/lattices. The LBM–FVM was
found to take slightly less number of iterations and it was also computationally found slightly (1.03 times)
faster than the FVM–FVM.
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5. Conclusions

The LBM was used to solve the energy equations of transient conduction–radiation heat transfer problems
in 1-D planar and 2-D square geometries containing an absorbing, emitting and isotropically scattering med-
ium. Medium boundaries were considered diffuse-gray. To compare the performance of the LBM, energy
equations of the problems were also solved using the FVM of the CFD. In the solution of the energy equations
using the LBM and the FVM, the radiative information was computed using the FVM of the radiative heat
transfer. For the same size of the control volumes and the lattices, in all the cases, results in both the FVM–
FVM and the LBM–FVM were found in good agreements with those available in the literature and for var-
ious sets of parameters, they compared very well with each other. The number of iterations and the CPU times
in the FVM–FVM and the LBM–FVM were found almost the same. The LBM–FVM was found slightly fas-
ter than the FVM–FVM.

The objective of the present work was to establish the compatibility of the FVM of the radiative heat
transfer and the LBM for the solution of the energy equation of a combined conduction and radiation heat
transfer. The FVM of the radiative heat transfer has emerged as one of the most versatile methods and the
LBM is emerging as a potential complement of the CFD based methods. In the present work, with two
simple geometries, with regard to the computational time, the LBM–FVM combination did not show
any marginal advantage over the FVM–FVM. However, like fluid dynamics, even without parallelization,
in complicated geometries and medium conditions, the LBM–FVM may have a gain over the FVM–FVM.
Therefore, in combined radiation, conduction and/or convection heat transfer problems, use of the LBM for
the solution of the energy equations and FVM for the calculation of radiative information should be further
explored.
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